Zur Startseite gehen
Wunschlisten
Artikelnummer: 811333

GOOGLE CORAL SYSTEM-ON-MODULE (SOM) 1GB

    Zur Wunschliste hinzufügen
    Zur Wunschliste hinzufügen
    JOY-IT Mikrocontrollerboard One C ATmega 328PB, ARD-ONE-C
    JOY-IT Mikrocontrollerboard One C ATmega 328PB, ARD-ONE-C
    Artikelnummer: 811678
    sofort lieferbar, Lieferzeit 1-3 Werktage
    9,80 € inkl. MwSt. zzgl. Versand

      Zur Wunschliste hinzufügen
      Zur Wunschliste hinzufügen
      GOOGLE CORAL CORAL M.2 ACCELERATOR MIT DUAL EDGE TPU
      GOOGLE CORAL CORAL M.2 ACCELERATOR MIT DUAL EDGE TPU
      Artikelnummer: 811332
      sofort lieferbar, Lieferzeit 1-3 Werktage
      59,95 € inkl. MwSt. zzgl. Versand

      • Sale
      %
      Zur Wunschliste hinzufügen
      Zur Wunschliste hinzufügen
      JOY-IT Spannungsversorgung für Breadboards
      JOY-IT Spannungsversorgung für Breadboards
      Artikelnummer: 810677
      sofort lieferbar, Lieferzeit 1-3 Werktage
      statt 3,60 € -13% 3,14 € inkl. MwSt. zzgl. Versand

        Zur Wunschliste hinzufügen
        Zur Wunschliste hinzufügen
        RS232/TTL Wandler mit MAX3232
        RS232/TTL Wandler mit MAX3232
        Artikelnummer: 810358
        sofort lieferbar, Lieferzeit 1-3 Werktage
        2,35 € inkl. MwSt. zzgl. Versand

          Zur Wunschliste hinzufügen
          Zur Wunschliste hinzufügen
          GOOGLE CORAL CORAL M.2 ACCELERATOR A+E KEY
          GOOGLE CORAL CORAL M.2 ACCELERATOR A+E KEY
          Artikelnummer: 811335
          sofort lieferbar, Lieferzeit 1-3 Werktage
          35,50 € inkl. MwSt. zzgl. Versand

            Zur Wunschliste hinzufügen
            Zur Wunschliste hinzufügen
            GOOGLE CORAL CORAL M.2 ACCELERATOR B+M KEY
            GOOGLE CORAL CORAL M.2 ACCELERATOR B+M KEY
            Artikelnummer: 811336
            sofort lieferbar, Lieferzeit 1-3 Werktage
            35,50 € inkl. MwSt. zzgl. Versand

              Zur Wunschliste hinzufügen
              Zur Wunschliste hinzufügen
              SD Speicherkartenmodul
              SD Speicherkartenmodul
              Artikelnummer: 810359
              sofort lieferbar, Lieferzeit 1-3 Werktage
              1,65 € inkl. MwSt. zzgl. Versand

                %
                Zur Wunschliste hinzufügen
                Zur Wunschliste hinzufügen
                JOY-IT ULN2003 Treiber mit 5V Schrittmotor
                JOY-IT ULN2003 Treiber mit 5V Schrittmotor
                Artikelnummer: 810676
                sofort lieferbar, Lieferzeit 1-3 Werktage
                statt 4,98 € 4,75 € inkl. MwSt. zzgl. Versand

                  Zur Wunschliste hinzufügen
                  Zur Wunschliste hinzufügen
                  PJRC, Audio Board für Teensy 4.0
                  PJRC, Audio Board für Teensy 4.0
                  Artikelnummer: 811189
                  sofort lieferbar, Lieferzeit 1-3 Werktage
                  22,39 € inkl. MwSt. zzgl. Versand

                    %
                    Zur Wunschliste hinzufügen
                    Zur Wunschliste hinzufügen
                    BBC MICRO:BIT 2 in Einzelverpackung (ohne Zubehör) Antistatic Beutel m. Aufkleber
                    BBC MICRO:BIT 2 in Einzelverpackung (ohne Zubehör) Antistatic Beutel m. Aufkleber
                    Artikelnummer: 811275
                    sofort lieferbar, Lieferzeit 1-3 Werktage
                    statt 18,66 € 18,61 € inkl. MwSt. zzgl. Versand

                    Produktinformationen "GOOGLE CORAL SYSTEM-ON-MODULE (SOM) 1GB"
                    Das Google Coral System-on-Module (SoM) 1GB ist ein komplett integriertes Systemmodul für hardwarebeschleunigte Machine Learning Anwendungen, bestehend aus CPU, GPU, Edge TPU, Wi-Fi, Bluetooth, und Speicher in nur 40mm x 48mm Größe.
                    Dieses Modul kann einfach in Ihre eigene Hardware (und Anwendung) eindesigned werden. Es ist beispielsweise der Kern des Coral Dev Boards (in der 4GB Variante).

                    Ihre Vorteile:
                    - Das Design eines passenden Trägerboards für Ihre machine learning Anwendung ist deutlich kosteneffektiver, und schneller.
                    - Sie erhalten eine aufeinander abgestimmte Hardwareplattform mit guter Softwareunterstützung.
                    - Durch die drei Speichervarianten können Sie die für Ihre Anwendung passendste wählen - Ihren Kunden Optionen anbieten, oder Kosten optimieren

                    Coral Som:
                    Das Google Coral SoM 1GB enthält neben der EdgeTPU die wichtigsten Komponenten eines embedded-PC:
                    - NXP i.MX 8M SoC (CPU + GPU)
                    - Google Edge TPU ML accelerator
                    - Crypto-Koprozessor
                    - Wi-Fi + Bluetooth
                    - 8 GB eMMC
                    - 1 GB LPDDR4
                    - USB 3.0 Schnittstelle
                    - Gigabit Ethernet Schnittstelle
                    - HDMI und MIPI-DSI
                    - MIPI-CSI-2
                    - bis zu 95 x GPIO (inklusive SPI, I2C, PWM, UART, SAI und SDIO)
                    Sie können im Prototyping-Stadium Ihre Anwendung mit Hilfe des 4GB Coral Development Boards umsetzen, das auf diesem SoM Modul basiert - und anschließend einfach ein eigenes Hardware-Design realisieren, das für Ihre Anwendung optimiert ist.

                    Die Edge TPU:
                    Mit der Edge TPU können Tensor Flow Lite Modelle schnell und energiesparend für Inferenz genutzt werden. Ein besonderer Vorteil dieser Lösung: Ihre Daten bleiben lokal. Das hilft bei der Latenz, und natürlich beim Datenschutz! (Und entsprechend der Befolgung der relevanten Gesetze, beispielsweise der Datenschutz-Grundverordnung (DSGVO), auf Englisch GDPR genannt)
                    Google nutzt zunehmend künstliche Intelligenz (AI) und maschinelles Lernen (ML) um seine Dienstleistungen zu realisieren. Dazu entwickelte es für seine Rechenzentren spezialisierte Prozessoren namens TPU ("tensor processing unit"), die die Algorithmen mit dem TensorFlow Framework schneller und energiesparender ausführen können. Beispielsweise wird Google Maps durch von Street View aufgenommene Straßenschilder verbessert, die mit Hilfe eines auf TensorFlow basierenden neuronalen Netzes analysiert werden. Der Clou: TensorFlow kann einfach in Python programmiert werden.

                    Die Edge TPU unterstützt das TensorFlow Lite Framework. Die Edge TPU kann bis zu 4 Billionen Rechenoperationen pro Sekunde mit nur 2 W Verbrauch durchführen. TensorFlow Lite ist eine abgewandelte Variante von TensorFlow, die speziell auf den Bedarf mobiler Endgeräte und von embedded devices angepasst wurde. Viele TensorFlow Anwendungen lassen sich auch in TensorFlow Lite realisieren.

                    Technische Daten:

                    • NXP I.MX 8M SOC
                    Quad-Core ARM Cortex-A53 (@1.5 GHz, 64-bit ARMv8-A) + Cortex-M4F
                    Vivante GC7000Lite GPU (supports Vulkan), 32 GFLOPs 32-bit or 64 GFLOPs 16-bit
                    4Kp60 HEVC/H.265 main und main 10 decoder
                    4Kp60 VP9, 4Kp30 AVC/H.264 decoder (benötigt volle Systemleistung)
                    1080p/60fps MPEG-2, MPEG-4, MJPEG, H.263 decoder

                  • SPEICHER
                  • Flash: 8GB eMMC
                    RAM: 1GB LPDDR4
                    SDIO Schnittstelle unterstützt Boot von SD Karte (falls in Ihrem Design vorhanden)

                  • EDGETPU
                  • Google Edge TPU ML accelerator coprocessor
                    4 TOPS (int8); 2 TOPS pro Watt
                    an NXP i.MX 8M SoC via PCIe (Gen2 x1) und I2C/GPIO angebunden
                    Tipp: die Anbindung via PCIe ermöglicht die maximale Transferrate auf das EdgeTPU Modul, daher ist das Coral System-on-Module insbesondere gut für Anwendungen mit hoher Framerate / hohen Leistungserfordernissen geeignet.

                  • NETZWERK & USB
                  • Das Coral SoM verfügt über folgende Netzwerk-Schnittstellen:
                    Wi-Fi 2x2 MIMO (802.11a/b/g/n/ac 2.4/5GHz), Murata LBEE5U91CQ Modul
                    Bluetooth 4.2 and BLE (Bluetooth Low Energy), Murata LBEE5U91CQ Modul
                    2x USB 3.0/2.0 Controller mit integrierten PHYs
                    1x Gigabit Ethernet Controller, unterstützt EEE, Ethernet AVB, und IEEE 1588, via RGMII (Reduced gigabit media-independent interface)

                  • HDMI BILDSCHIRM-SCHNITTSTELLE
                  • HDMI 2.0a (Standard-Größe), unterstützt einen Bildschirm mit bis zu 1080p Auflösung
                    Hochskalierung & Herunterskalierung zwischen 4K und HD Video (nutzt volle Systemressourcen)
                    20+ Audio interfaces 32-bit @ 384 kHz fs, mit Time Division Multiplexing (TDM) support
                    SPDIF Eingang und Ausgang
                    Audio Return Channel (ARC) über HDMI wird unterstützt

                  • MIPI-DSI BILDSCHIRM-SCHNITTSTELLE
                  • MIPI-DSI 4 Lanes, unterstützt eine Anzeige, Auflösungen bis zu 1920 x 1080 @ 60 Hz
                    LCDIF Display Controller
                    Ausgabe: LCDIF oder DC display controller output

                  • AUDIO
                  • 1x SPDIF Eingang und Ausgang
                    2x synchronous audio interface (SAI) Module, unterstützen I2S, AC97, TDM und codec/DSP Interfaces
                    1x SAI für 8 Tx Kanäle für HDMI Audioausgang
                    1x SPDIF Eingang für HDMI Arc Eingang

                  • KAMERA
                  • 2 x MIPI-CSI2 Kameraeingänge (jeweils 4-lane)
                    GPIO-Interface
                    2x UART Schnittstelle
                    2x I2C Schnittstelle
                    2x SPI Schnittstellen
                    16x GPIOs mit Interrupt-Fähigkeit
                    4x PWM Ausgänge

                  • KONNEKTIVITÄT & SCHNITTSTELLEN: SONSTIGES
                  • 1x uSDHC Interface
                    IOMUXC (Input/output multiplexing controller) für Kontrolle der pads
                    Hinweis: das SoM nutzt einige der SoC GPIOs / Schnittstellen intern, bspw. um die Coral Edge TPU anzubinden. Die hier aufgeführten Schnittstellen berücksichtigen das bereits, und stehen Ihnen uneingeschränkt zur Verfügung.

                  • SICHERHEIT
                  • Resource Domain Controller (RDC), supports four domains and up to eight regions
                    Arm TrustZone (TZ) architecture
                    On-Chip RAM (OCRAM) secure region protection using OCRAM controller
                    High Assurance Boot (HAB)
                    Cryptographic acceleration and assurance (CAAM) module
                    Secure non-volatile storage (SNVS): Secure real-time clock (RTC)
                    Secure JTAG controller (SJC)
                    Crypto Koprozessor Microchip ATECC608A

                  • SPANNUNGSVERSORGUNG
                  • Das Coral SoM benötigt eine Spannungsversorgung mit 5 V, und generiert daraus alle anderen benötigten Spannungen selbst mit einem on-board PMIC.
                    Leistungsaufnahme des SoM ca.:
                    idle: 2.6 W
                    idle mit HDMI Ausgabe: 3.0 W
                    High performance: 6.2 W

                  • WEITERE INFORMATIONEN
                  • Abmessungen des Coral SoM: 40 mm x 48 mm x 5.11 mm
                    Gewicht: 13 g
                    Verbindung zum Trägerboard: das SoM wird mit dem Trägerboard über drei 100-polige Steckverbinder (Hirose DF40C-100DP-0.4V) verbunden.

                    Software-Unterstützung:
                  • MENDEL LINUX
                  • Mendel Linux ist ein von Google entwickeltes Debian-Derivat, speziell für die Coral Plattform. Auf dem SoM ist ab Werk ein Bootloader vorinstalliert, Sie müssen Mendel Linux manuell installieren.
                    Mendel Linux nutzt Debian's upstream binary packages, um möglichst hohe Kompatibilität zu bewahren, und Sicherheitsupdates zeitnah zu ermöglichen. Es unterstützt aktuell nur die Coral Dev Boards (auch als "enterprise" oder "phanbell" bekannt) und die Coral SoM Module (System-on-Module).

                  • TENSORFLOW LITE
                  • Das Coral System-on-Module unterstützt die Ausführung von (kompilierten) TensorFlow Lite Modellen auf seiner EdgeTPU.

                  • AUTOML VISION EDGE
                  • Das Coral System-on-Module unterstützt AutoML Vision Edge, um Modelle für Bild-Klassifikation (image classification models) schnell zum Einsatz bringen zu können.

                    Potential für industrielle Anwendungen:
                    Die Google Coral TPU & TensorFlow Lite sind eine revolutionäre Produkt-Plattform für machine learning Anwendungen! Damit werden embedded Lösungen möglich, die beispielsweise Probleme mit Werkstücken erkennen können, Verkehrssituation erkennen können, und vieles mehr.
                    Das Coral SoM (System-on-Module) eignet sich wenn Sie eine eigene Hardware-Lösung anstreben, die höhere Anforderungen an machine-learning Inferenz stellt, und gleichzeitig eine optimierte Leistungsaufnahme erfordert.

                    Als Alternative zu dem SoM, das eine eigene Plattform bietet, gibt es von Coral by Google auch PCI Express Module und M.2 Module, die Ihre existierende oder off-the-shelf hardware erweitern können.

                    Downloads & Dokumentation:
                  • CORAL SOM (SYSTEM-ON-MODULE)
                  • System-on-Module Datenblatt (PDF, englisch)
                    https://coral.ai/static/files/Coral-SoM-datasheet.pdf

                    Einstieg mit dem System-on-Module (englisch)
                    https://coral.ai/docs/som/get-started/

                  • EDGE TPU & MODELLE
                  • Einführung in Modelle auf der EdgeTPU (englisch) (Tensor Flow Lite Modelle)
                    https://coral.ai/docs/edgetpu/models-intro

                    Überblick über das Inferencing auf der Edge TPU (englisch)
                    https://coral.ai/docs/edgetpu/inference/

                    Betrieb mehrerer Modelle mit mehreren Edge TPUs (englisch)
                    https://coral.ai/docs/edgetpu/multiple-edgetpu/

                    Ein Modell auf mehrere Edge TPUs aufteilen (englisch)
                    https://coral.ai/docs/edgetpu/pipeline/

                  • API & DOWNLOADS
                  • PyCoral API (Python)
                    https://coral.ai/docs/reference/py/

                    Libcoral API (C++)
                    https://coral.ai/docs/reference/cpp/

                    Libedgetpu API (C++)
                    https://coral.ai/docs/reference/cpp/edgetpu/

                    Edge TPU compiler
                    https://coral.ai/docs/edgetpu/compiler

                    vorkompilierte Modelle
                    https://coral.ai/models/

                    Alle Softwaredownloads
                    https://coral.ai/software


                    Verfügbare Downloads

                    Arbeitsspeicher: 8 GB
                    Betriebssystem: Linux
                    Farbe: mehrfarbig
                    Menge: 1 St.
                    RAM-Typ: LPDDR4

                    0 von 0 Bewertungen

                    Bewerten Sie dieses Produkt!

                    Teilen Sie Ihre Erfahrungen mit anderen Kunden.